Introcan Safety® 3

Sicherheitsvenenverweilkanüle mit integrierter Membran zur Reduzierung von Blutaustritt

Universal-Hinterschliff

für die atraumatische Venenpunktion 1.

Stabilisierungsplattform/Befestigungsflügel

verbessern die Katheterstabilität und tragen dazu bei, die Bewegung des Katheters im Gefäß und damit verbundene Komplikationen zu minimieren ^{2, 3, 4}.

Bewährter passiver Sicherheitsmechanismus

berührungssicher innerhalb des Kathetergehäuses platziert. Zum Schutz vor Nadelstichverletzungen und assoziierten Infektionen ^{5, 6}.

Doppelte Blutrückflusstechnologie

entwickelt zur Bestätigung der Platzierung von Kanüle und Katheter im Gefäß⁷, unterstützt den initialen Punktionserfolg^{9,10}.

Ohne Zuspritzport

Gemäß der Empfehlung der KRINKO ("Prävention von Infektionen, die von Gefäßkathetern ausgehen" – Teil 1, Manipulation und Antisepsis an Hubs und Zuspritzstellen) ⁸.

Integriertes Septum mit Mehrfachfunktion

Integriertes Septum

reduziert Blutaustritt während der Katheteranlage **und** der gesamten Verweildauer des Zugangs.

Das Septum/die Membran kann nicht nur Blutaustritt bei der Anlage des Katheters und jeder weiteren Systemeröffnung verhindern:

Auch die Notwendigkeit der Venenkompression im Bereich der Kathetereintrittsstelle vor dem Entfernen der Stahlkanüle wird deutlich reduziert. Der Reinigungsaufwand im Anlagebereich kann verringert werden ^{7, 10}.

Für mehr Informationen zur Introcan Safety® 3 hier scannen/klicken.

Artikel-Nr.	PZN	Größe*	Katheter	Länge (mm)	Durchmesser (mm)	Flow (ml/min)	Flow (ml/h)
4251127-01	11868687	24 G	PUR	19	0,7	22	1320
4251128-01	11868701	22 G	PUR	25	0,9	35	2100
4251129-01	11868718	20 G	PUR	25	1,1	65	3900
4251130-01	11868724	20 G	PUR	32	1,1	60	3600
4251137-01	16503743	20 G	PUR	50	1,1	55	3300
4251144-01	_	20 G	FEP	50	1,1	55	3300
4251131-01	11868730	■ 18 G	PUR	32	1,3	105	6300
4251132-01	11868747	■ 18 G	PUR	45	1,3	100	6000
4251136-01	12644205	■ 16 G	PUR	32	1,7	195	11700
4251133-01	12644211	■ 16 G	PUR	50	1,7	185	11100
4251135-01	16032031	14 G	PUR	32	2,2	325	19500
4251134-01	16032048	14 G	PUR	50	2,2	310	18600

Referenzen

- 1 Suzuki T., Fukuyama H., Nishiyama J., Oda M., Takahashi M. Differences in Penetration Force of Intravenous Catheters: Effect of Grinding Methods on Inner Needles of Intravenous Catheters.
- 2 Gorski, L. et al. Infusion Therapy: Standards of practice. Journal of Infusion Nursing. 2016; Vol 39 (1S): S72-73.
- 3 Schears G. Summary of Product Trials for 10,164 Patients: Comparing an Intravenous Stabilizing Device to Tape. J Infus Nurs. August 2006; 29(4):225-31.
- 4 Mensor L. Dirogio D. Souza C. Contadin R. Cost-Effectiveness of safety engineered peripheral catheters with an integrated stabilization platform under the perspective of hospitals in Brazil. BR J of Health Econ. April 2016;18(1):3–10.
- 5 Tosini W. et al. Needlestick Injury Rates According to Different Types of Safety-Engineered Devices: Results of a French Multicenter Study. Infection Control & Hospital Epidemiology. April 2010; 31(4): 402-407.
- 6 Sossai D. et al. Efficacy of safety catheter devices in the prevention of occupational needlestick injuries: applied research in the Liguria Region (Italy). J Prev Med Hyg. 2016; 57: E110-E114
- 7 Cooper D. Whitfield M.D. Newton D. Chiarella J. Machaczek KK. Introduction of a non-ported peripheral intravenous catheter with multi-use blood control septum offers improvements in the overall efficiency of the procedure and is clinically well accepted. Int. J of Healthcare Techn and Mgmt. January 2016; 1-20.
- 8 Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) am Robert Koch-Institut (RKI) (Bundesgesundheitsblatt 02/2017) https://www.rki.de/DE/Content/Infekt/Krankenhaushygiene/Kommission/Downloads/Gefaesskath_Inf_Teil1.pdf?__blob=publicationFile
- 9 Moergeli et al. A comparison of first attempt cannulation success of peripheral venous catheter systems with and without wings and injection ports in surgical patients—a randomized trial. BMC Anesthesiology. 2022 (88): 1-11.
- 10 Haeseler G. Hildebrand M. Fritscher J. Efficacy and ease of use of an intravenous catheter designed to prevent blood leakage: a prospective observational trial. 2015. J Vasc Access: 1-4.